Вероятностное толкование закона распределения максвелла

Статистическое толкование второго начала термодинамики.

Связь энтропии с термодинамической вероятностью установил Больцман – энтропия пропорциональна логарифму термодинамической вероятности: S=klnW.

Статистический смысл понятия энтропии состоит в том, что увеличение энтропии изолированной системы связано с переходом этой системы из менее вероятного состояния в более вероятное.

Одной из формулировок второго закона термодинамики, выявляющей статистический характер этого закона, является формулировка Больцмана: все процессы в природе протекают в направлении, приводящем к увеличению вероятности состояния.

Энтропия в термодинамике.

Величина, равная отношению теплоты, полученной телом при изотермическом процессе, к температуре, при которой происходит теплопередача, т.е. Q/T, называется приведённой теплотой.

Алгебраическая сумма приведённых теплот для обратимого цикла Карно равна нулю.

Функция, характеризующая направление протекания самопроизвольных процессов в замкнутой термодинамической системе, называется энтропией: .

Каждому состоянию тела соответствует одно определённое значение энтропии. Поэтому энтропия является однозначной функцией состояния.

Закон Максвелла для распределения молекул идеального газа по скоростям теплового движения.

Скорости молекул газа имеют различные значения и направления, причём как величина, так и направление скорости каждой отдельной молекулы изменяется в результате соударений, поэтому нельзя определить число молекул, обладающих точно заданной скоростью в данный момент времени, но можно подсчитать число молекул, скорости которых лежат в интервале от 1 до 2.

При этом предполагалось, что в газе не существует молекул, имеющих в точности одинаковые скорости, и число молекул dN, скорость которых лежит в узком интервале между  и +d, пропорционально общему числу молекул N, ширине интервала d и зависит от скорости . Такая теоретическая зависимость была установлена Максвеллом на основании теории вероятностей:

Вероятностное толкование закона распределения Максвелла. Барометрическая формула.

p=pe^(-mgh/(kT)) – барометрическая формула.

Эта формула показывает зависимость давления газа от высоты над поверхностью Земли. Если учесть, что концентрация молекул воздуха в атмосфере определяет давление, то эту формулу можно записать в виде n=ne^(-mgh/(kT)).

Из этой формулы следует, что с понижением температуры число частиц на высоте, отличной от нуля, убывает и при T=0 K обращается в нуль, т.е. при 0 К все молекулы расположились бы на земной поверхности.

Закон Больцмана для распределения частиц идеального газа во внешнем потенциальном поле.

Так как потенциальная энергия молекул на различной высоте различна и на высоте h определяется по формуле Еп=mgh, то n=ne^(-Eп/(kT)) – закон Больцмана, показывающий распределение участвующих в тепловом движении молекул в потенциальном поле сил, в частности в поле силы тяжести.

Читайте также:  85 апостольских правил с толкованием

Закон Больцмана является универсальным, он справедлив для любых частиц, находящихся в потенциальном поле сил.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Статистическое толкование второго начала термодинамики

Цикл Карно для идеального газа и его К.П.Д.

18. Второе начало термодинамики. Вечный двигатель второго рода. Статистическое толкование второго начала термодинамики. Энтропия в термодинамике. Изменение энтропии при изопроцессах. Статистическое толкование энтропии.

Второе начало термодинамики. Невозможны такие процессы, единственным конечным результатом которых являлось бы отнятие от некоторого тела тепла и превращение этого тепла полностью в работу.

Вечный двигатель второго рода — воображаемая машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики.

Энтропия изолированной системы может только возрастать либо оставаться неизменной. dS³0.

Энтропия в термодинамике. Сумма приведённых количеств тепла, полученных системой при переходе из одного состояния в другое не зависит от процесса, при котором это происходит, поэтому dQ/T представляет собой приращение некоторой функции состояния. Эта функция называется энтропией. dS=(dQ/T)обр. Свойства энтропии. 1. dS³dQ/T. 2. Энтропия изолированной системы может только возрастать, так как теплоизолированная система dQ=0, dS³0. 3. Для обратимых процессов dQ=0, dS=0, S=const.

19. Закон Максвелла для распределения молекул идеального газа по скоростям теплового движения. Вероятностное толкование закона распределения Максвелла.

Вероятностное толкование закона распределения Максвелла. Выражение dNv=Nf(v)4pv 2 dv даёт число молекул, величина скоростей которых лежит в интервале от v до v+dv. Разделив его на n получим вероятность того, что скорость молекулы окажется между v и v+dv, то есть dPv=f(v)4pv 2 dv.

20. Барометрическая формула. Закон Больцмана для распределения частиц идеального газа во внешнем потенциальном поле.

Барометрическая формула. p=pexp(-(Mgh)/(RT)). Эта формула называется барометрической. Из неё следует, что давление убывает с высотой тем быстрее, чем тяжелее газ (чем больше M) и чем ниже температура.

Закон Больцмана для распределения частиц идеального газа во внешнем потенциальном поле. n=nexp(-ep/(kT)) Больцман доказал, что это распределение справедливо не только в случае потенциальных сил земного тяготения, но и в любом потенциальном поле сил совокупности любых одинаковых частиц, находящихся в состоянии хаотического движения. В соответствии с этим это распределение было названо законом Больцмана для распределения частиц идеального газа во внешнем потенциальном поле.

21. Среднее число столкновений и средняя длина свободного пробега молекул идеального газа. Эффективный диаметр молекулы.

Читайте также:  Горнфельд о толковании художественного произведения

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d. Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Среднее число столкновений за 1 с равно числу молекул в объеме, так называемого ломаного цилиндра:

Расчеты показывают, что при учете движения других молекул

Тогда средняя длина свободного пробега

т. е. обратно пропорциональна концентрации n молекул. С другой стороны, p=nkt. Значит,

22. Явления переноса. Теплопроводность, диффузия, вязкость.

Теплопроводность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за час при разности температур на двух противоположных поверхностях в 1 К.

Диффузия ‑ взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму.

Вязкость ‑ свойство газов и жидкостей оказывать сопротивление необратимому перемещению одной их части относительно другой при сдвиге, растяжении и др. видах деформации. Вязкость характеризуют интенсивностью работы, затрачиваемой на осуществление течения газа или жидкости с определенной скоростью.

23. Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы реального газа. Критическое состояние. (Внутренняя энергия реального газа.)

Дата добавления: 2015-04-24 ; Просмотров: 3044 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Вероятностное толкование закона распределения максвелла

Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυx, Δυy, Δυz, причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υi, поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность.

Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 году с помощью методов теории вероятностей.

Читайте также:  Значение русских женских имен и его толкование
Максвелл Джеймс Клерк (1831 – 1879) – английский физик. Работы посвящены электродинамике, молекулярной физике, общей статике, оптике, механике, теории упругости. Установил статистический закон, описывающий распределение молекул газа по скоростям. Самым большим достижением Максвелла является теория электромагнитного поля, которую он сформулировал в виде системы нескольких уравнений, выражающих все основные закономерности электромагнитных явлений.

Скорость – векторная величина. Для проекции скорости на ось х (x-й составляющей скорости) из (2.2.1) имеем

Графическое изображение функции показано на рисунке 2.2. Видно, что доля молекул со скоростью не равна нулю. При , (в этом физический смысл постоянной А1).

Эта величина (dnxyz) не может зависеть от направления вектора скорости . Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости.

Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ (рис. 2.4). Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

При dυ = 1 получаем плотность вероятности, или функцию распределения молекул по скоростям:

Обозначим: тогда из (2.3.4) получим:

Рассмотрим пределы применимости классического описания распределения частиц по скоростям. Для этого воспользуемся соотношением неопределенностей Гейзенберга. Согласно этому соотношению координаты и импульс частицы не могут одновременно иметь определенное значение. Классическое описание возможно, если выполнены условия:

Здесь – постоянная Планка – фундаментальная константа, определяющая масштаб квантовых (микроскопических) процессов.

Таким образом, если частица находится в объеме , то в этом случае возможно описание ее движения на основе законов классической механики.

Наиболее вероятная, среднеквадратичная и средняя арифметическая скорости молекул газа

Рассмотрим, как изменяется с абсолютной величиной скорости число частиц, приходящихся на единичный интервал скоростей, при единичной концентрации частиц.

График функции распределения Максвелла

Величину скорости, на которую приходится максимум зависимости , называют наиболее вероятной скоростью.

Найдем эту скорость из условия равенства производной .

Для одного моля газа:

Формула Максвелла для относительных скоростей

Для решения многих задач удобно использовать формулу Максвелла, где скорость выражена в относительных единицах.

Относительную скорость обозначим через u:

На рисунке 2.7 показано максвелловское распределение частиц f(υ), имеющих скорости от υ до υ+dυ. За единицу скорости здесь взята наиболее вероятная скорость.

Полезно знать, что .

Зависимость функции распределения Максвелла от массы молекул и температуры газа

На рисунке 2.8 показана зависимость f(υ) при различных температурах и массах молекул газа.

Источник

Оцените статью
Имя, Названия, Аббревиатуры, Сокращения
Adblock
detector